Posts Tagged: Load Support

Are material shortages delaying your road construction projects? Here is how to stay on schedule and within budget.

Written by: Bryan Wedin, P.E., Chief Design Engineer Road construction is booming, and this trend is expected to remain strong due to high demand and the Infrastructure Investment and Jobs Act (IIJA), which includes investments across many sectors, including public infrastructure. Along with this boom, the road construction industry has been dealing with inflation-related cost increases and limited availability of construction materials. The industry has been impacted by supply-chain interruptions and shortages for many roadway materials including lime, cement, and even aggregate. These materials are typically used for roadway base construction, which means road construction projects that use these materials may be subject to delays. Due to these shortages and delays, on-site material or sand-filled GEOWEB® geocells can provide a cost-effective, readily available substitute for base materials–especially where native subgrade conditions consist of weak or soft soils. GEOWEB® Geocells for Roadway Base Stabilization The GEOWEB geocells have been used for load support and foundation applications worldwide for more than 40 years. Developed in collaboration with the U.S. Army Corps of Engineers (USACE) in the late 1970s, Presto co-invented the technology now known as geocells or a cellular confinement system (CCS). The early applications of geocells consisted primarily of stabilized, expedient… Read more »

How Geosynthetics Are Uniquely Poised to Help Alleviate Congestion at U.S. Ports

Written by: Michael J. Dickey, PE, Director and Bryan Wedin, PE, Chief Design Engineer On May 6, 2022, the Maritime Administration (MARAD) released an amended Notice of Funding Opportunity (NOFO), allocating over $234 million for port infrastructure development in 2022. Adding to the previously appropriated amount of $450 million from the Infrastructure Investment and Jobs Act (IIJA, or Bipartisan Infrastructure Law), this will bring the total amount available for port improvement projects to $684 million for FY2022. The significance of this investment comes at a crucial time. According to the American Association of Port Authorities, the pandemic has laid bare the need for a transport system that is able to surge and stretch across all links—from sea, to land, to rail, to warehouse, to consumer. The question is, how can this funding be used to meet this need quickly and cost-effectively? The answer may lie in a strategy implemented in 2021 in the state of Georgia to alleviate congestion at the Port of Savannah. The Georgia Port Authority, in partnership with Norfolk Southern, implemented a solution that has caught the attention of other U.S. port authorities and Class I railroads using what is being referred to as “pop-up container yards”…. Read more »

Innovative Solutions for Designing & Constructing Transmission Line Roads & Substations

Energy Site

When natural disasters, power surges, accidents, or general equipment failures threaten the reliability of the power grid, maintenance crews must be able to quickly and safely access transmission lines and substations to make repairs. Designing resilient energy infrastructure that ensures power companies have a reliable, regular supply of energy and contingency measures in place in the event of a power failure is crucial to their business and the communities they serve. Build Sustainable Roads for Utility Transmission & Substation Access Accessing sites in remote or undeveloped areas can present several challenges for the energy industry when it comes to building, operating, and maintaining power transmission lines and substations. Soft soils and low-water crossings can make it difficult for utility vehicles to safely and effectively reach sites for routine maintenance and emergency repairs. The GEOWEB® 3D Soil Stabilization System is ideal for shallow ground improvement applications and can easily be incorporated into unpaved access roads for transmission lines and substations. The GEOWEB geocells, made from an all-weather high-density polyethylene (HDPE) material, are durable, chemical resistant, and outperform standard two-dimensional geosynthetics through lateral confinement of infill materials, facilitating what is known as the “mattress effect” for distributing loads across weak subgrades. The… Read more »

Build a Stronger Foundation for Infrastructure Projects with 3D Soil Confinement

It’s no secret that America’s infrastructure is desperately in need of investment. The American Society of Civil Engineers (ASCE) gave the country’s infrastructure an overall grade of D-plus in its 2017 Infrastructure Report Card—dangerously close to an outright failing grade. The ASCE estimates that the U.S. will need to spend nearly $4.5 trillion by 2025 to fix the country’s roads, bridges, dams, and other infrastructure. Our nation’s roads and bridges—commonly referred to as the “backbone” of the U.S. transportation system—received grades of D and C-plus, respectively. These transportation systems are deteriorating due to advancing age, increasing use, and inadequate funding. This degradation leads to a significant cost to users in terms of time, money, and safety. There are over 4 million miles of road in the United States, and the cost to maintain these roadways can vary greatly by state. Several factors determine maintenance costs, including the type of pavement surface, its current condition, its geographical location, average precipitation, number of annual freeze/thaw cycles, and frequency of use. Three-Dimensional Geocells Provide Solutions to Aging Infrastructure The long-term performance of infrastructure construction projects depends on the strength of the underlying soil. Through an interconnected honeycomb-like network, 3D geocells confine and stabilize… Read more »

Why Geocells Outperform Geogrids for Road Construction

Written By: Bill Handlos, PE, Director of Presto Geosystems Geocells (cellular confinement) offer a more effective and practical 3D design solution to load support challenges than multilayered 2D geogrid efforts. Geocells transfer applied loads instantaneously, delivering practical soil stabilization in a product that is fast and easy to install.        How do geogrids work? Geogrids rely on rutting, displacement and lateral movement of the road material to activate the load support reaction of the product. As shown below, failure of the driving surface must occur before the geogrid reacts. As a result, rutting and soil displacement is a prerequisite reality to the system. Since the geogrid is two-dimensional, material not located directly within the plane occupied by the geogrid is free to move, shift and displace. It is essential that geogrids are placed in a flat or a pre-tensioned manner—but that is not practical in a construction environment. It is common to see geogrids unrolled over a prepared grade with an undulating surface. As aggregate is placed over the top of the geogrid, the material kinks and waves, further warping the 2D plane. The geogrid is rarely pulled tight during installation which does not allow full tension under… Read more »

Choosing the Right Geocell

Written By: Bryan Wedin P.E., Chief Design Engineer, Presto Geosystems Not all geocells are created equal. While most manufacturers can provide similar-looking written specifications, you need assurances that the material delivered for your project is of the high quality that you expect. Important factors in the success of your geocell project include: Quality The geocell material is proven, strong, and will last Require only the highest quality virgin High Density Polyethylene (HDPE) resin Low quality or recycled resin can lead to weak and/or inconsistent seam strength, putting the success of your project at risk. Non-HDPE materials cannot match the nearly 40 years of in-ground experience of HDPE geocells and plastic alloy proprietary blends can mask cheap stiff filler materials. ISO Certification Important, but the manufacturer sets the testing protocol for the certification. Require a Certificate of Analysis (COA) for the material that is shipped to your project. An ISO certification that does not require continuous testing is lacking. Integral Components The complete solution includes proper components Non-corrosive, high-strength panel connection method (ATRA® Keys vs. weak staples or zip ties) Anchors that provide secure connections to the geocell (ATRA® stakes vs. J-hooks) Load Transfer Devices for tendon applications that are non-corrosive and… Read more »

Creep Not a Factor for Geocell Load Support

Written by Matthew Kuester and Bill Handlos, PE An accurate understanding of creep resistance is essential to proper material selection when using polymers, and in the case of geocells, this science is being misapplied.  The definition of creep deformation is the tendency of a solid material to move slowly or deform permanently under the influence of mechanical stress.  Creep is something that creates fear and uncertainty with all designers where the possibility of creep factors exist. Yes, creep can occur in almost all materials including plastics, metals and concrete.  In cases such as bridge and building design, it is important to properly understand creep factors and account for creep in engineering calculations.  Yet, in the case of designing with geocells for load support, creep factors have no relevance. What Causes Creep? In order for creep to occur there must be; a constant load applied and a sustained deformation.  Creep only applies when there is a sustained load on a material for an extended period.  In a case of repeated on and off loading, this would be governed by fatigue and not by creep.  The second required factor for creep to occur is an ability to undergo sustained deformation of the… Read more »